
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 528
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

AUTOMATIC TEST PACKET GENERATION
M.P.Jegadeesan1, Dr.G.Tholkappia Arasu2

1PG Scholar, Department of Computer Science and Engineering, AVS Engineering College
E-mail :jegadeesan.p@gmail.com

2Principal, AVS Engineering College
E-mail :tholsg@gmail.com

Abstract
In this paper, We propose an automated and

systematic approach for testing and debugging
networks called“Automatic Test Packet
Generation” (ATPG). ATPG reads router
configurations and generates a device-
independent model. The model is used to
generate a minimum set of test packets to (mini-
mally) exercise every link in the network or
(maximally) exercise every rule in the network.
Test packets are sent periodically, and detected
failures trigger a separate mechanism to
localize the fault. ATPG can detect both
functional (e.g., incorrect firewall rule) and
performance problems (e.g., congested queue).
ATPG complements but goes beyond earlier
work in static checking (which cannot detect
liveness or performance faults) or fault
localization (which only localize faults given
liveness results). We describe our prototype
ATPG implementation and results on two real-
world data sets: Stanford University’s backbone
network and Internet2. We find that a small
number of test packets suffices to test all rules in
these networks: For example, 4000 packets can
cover all rules in Stanford backbone network,
while 54 are enough to cover all links. Sending
4000 test packets 10 times per second consumes
less than 1% of link capacity. ATPG code and the
data sets are publicly available.

Index Terms—Data plane analysis, network
troubleshooting, test packet generation.

1. INTRODUCTION

IT is notoriously hard to debug networks.
Every day, network engineers wrestle with
router misconfigurations,fiber cuts, faulty
interfaces, mislabeled cables, software bugs,
intermittent links, and a myriad other reasons
that cause net- works to misbehave or fail
completely. We tested our method on two real-world
data sets—the back- bone networks of Stanford
University, Stanford, CA, USA, and Internet2,
representing an enterprise network and a nationwide
ISP.

. The results are encouraging: Thanks to the
structure of real world rulesets, the number of
test packets needed is sur- prisingly small. For
the Stanford network with over 757 000 rules
and more than 100 VLANs, we only need 4000
packets to exercise all forwarding rules and ACLs.
On Internet2, 35 000 packets suffice to exercise all
IPv4 forwarding rules. Put another way, we can
check every rule in every router on the Stanford
backbone 10 times every second by sending test
packets that consume less than 1% of network
bandwidth. The link cover for Stanford is even
smaller, around 50 packets, which allows proactive
liveness testing every millisecond using 1% of
net- work bandwidth.

The contributions of this paper are as follows:

1) a survey of network operators revealing
common failures and root causes(Section II);

2) a test packet generation algorithm (Section IV-
A);

3) a fault localization algorithm to isolate faulty
devices and rules (Section IV-B);

4) ATPG use cases for functional and
performance testing (Section V);

5) evaluation of a prototype ATPG system using
rulesets collected from the Stanford and
Internet2 backbones (Sections VI and VII).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 529
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

2. EXISTING SYSTEM

Testing liveness of a network is a fundamental
problem for ISPs and large data center operators.
Sending probes between every pair of edge ports is
neither exhaustive nor scalable . It suffices to find a
minimal set of end-to-end packets that traverse
each link. However, doing this requires a way of
abstracting across device specific configuration
files, generating headers and the links they reach,
and finally determining a minimum set of test
packets (Min-Set-Cover).

To check enforcing consistency between policy and
the configuration.

Disadvantages Of Existing System

Not designed to identify liveness failures, bugs
router hardware or software, or performance
problems.

The two most common causes of network failure
are hardware failures and software bugs, and that
problems manifest themselves both as reachability
failures and throughput/latency degradation.

3. PROPOSED SYSTEM

Automatic Test Packet Generation (ATPG)

framework that automatically generates a minimal

set of packets to test the liveness of the underlying

topology and the congruence between data plane

state and configuration specifications. The tool can

also automatically generate packets to test

performance assertions such as packet latency.

It can also be specialized to generate a minimal set

of packets that merely test every link for network

liveness.

Advantages Of Proposed System:

 A survey of network operators revealing

common failures and root causes.

 A test packet generation algorithm.

 A fault localization algorithm to isolate

faulty devices and rules.

 ATPG use cases for functional and

performance testing.

Evaluation of a prototype ATPG system
using rule sets collected from the Stanford and
Internet2 backbones.

3.1 SYSTEM ARCHITECHURE

Fig.1. Automatic Test Packet
Generation

4.IMPLEMENTATION

Java Technology

Java technology is both a programming

language and a platform.

The Java Programming Language

 The Java programming language is a high-

level language that can be characterized by all of

the following buzzwords:

 Simple

 Architecture neutral

 Object oriented

 Portable

 Distributed

 High performance

 Interpreted

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 530
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

 Multithreaded

 Robust

 Dynamic

With most programming languages, you either

compile or interpret a program so that you can run

it on your computer. The Java programming

language is unusual in that a program is both

compiled and interpreted. With the compiler, first

you translate a program into an intermediate

language called Java byte codes —the platform-

independent codes interpreted by the interpreter on

the Java platform. The interpreter parses and runs

each Java byte code instruction on the computer.

Compilation happens just once; interpretation

occurs each time the program is executed. The

following figure illustrates how this works.

IMPLEMENTATION

MODULES:

 Test Packet Generation

 Generate All-Pairs Reachability Table

 ATPG Tool

 Fault Localization

MODULES DESCRIPTION:

Test Packet Generation:

We assume a set of test terminals in the network

can send and receive test packets. Our goal is to

generate a set of test packets to exercise every rule

in every switch function, so that any fault will be

observed by at least one test packet. This is

analogous to software test suites that try to test

every possible branch in a program. The broader

goal can be limited to testing every link or every

queue. When generating test packets, ATPG must

respect two key constraints First Port (ATPG must

only use test terminals that are available) and

Header (ATPG must only use headers that each test

terminal is permitted to send).

Generate All-Pairs Reachability Table:

ATPG starts by computing the complete set of

packet headers that can be sent from each test

terminal to every other test terminal. For each such

header, ATPG finds the complete set of rules it

exercises along the path. To do so, ATPG applies

the all-pairs reachability algorithm described. On

every terminal port, an all- header (a header that

has all wild carded bits) is applied to the transfer

function of the first switch connected to each test

terminal. Header constraints are applied here.

ATPG Tool:

ATPG generates the minimal number of test

packets so that every forwarding rule in the

network is exercised and covered by at least one

test packet. When an error is detected, ATPG uses

a fault localization algorithm to determine the

failing rules or links.

Fault Localization:

ATPG periodically sends a set of test packets. If

test packets fail, ATPG pinpoints the fault(s) that

caused the problem. A rule fails if its observed

behavior differs from its expected behavior. ATPG

keeps track of where rules fail using a result

function “Success” and “failure” depend on the

nature of the rule: A forwarding rule fails if a test

packet is not delivered to the intended output port,

whereas a drop rule behaves correctly when

packets are dropped. Similarly, a link failure is a

failure of a forwarding rule in the topology

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 531
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

function. On the other hand, if an output link is

congested, failure is captured by the latency of a

test packet going above a threshold.

5. CONCLUSION

Testing liveness of a network is a fundamental

problem for ISPs and large data center operators.

Sending probes between every pair of edge ports is

neither exhaustive nor scalable [30]. It suffices to

find a minimal set of end-to-end packets that

traverse each link. However, doing this requires a

way of abstracting across device specific

configuration files (e.g., header space), generating

headers and the links they reach (e.g., all-pairs

reachability), and finally determining a minimum

set of test packets (Min-Set-Cover). Even the

fundamental problem of automatically generating

test packets for efficient liveness testing requires

techniques akin to ATPG.

ATPG, however, goes much further than liveness

testing with the same framework. ATPG can test

for reachability policy (by testing all rules

including drop rules) and performance health (by

associating performance measures such as latency

and loss with test packets). Our implementation

also augments testing with a simple fault

localization scheme also constructed using the

header space framework. As in software testing, the

formal model helps maximize test coverage while

minimizing test packets. Our results show that all

forwarding rules in Stanford backbone or Internet2

can be exercised by a surprisingly small number of

test packets (for Stanford, and for Internet2).

Network managers today use primitive tools such

as and. Our survey results indicate that they are

eager for more sophisticated tools. Other fields of

engineering indicate that these desires are not

unreasonable: For example, both

the ASIC and software design industries are

buttressed by billion-dollar tool businesses that

supply techniques for both static (e.g., design rule)

and dynamic (e.g., timing) verification. In fact,

many months after we built and named our system,

we discovered to our surprise that ATPG was

awell-known acronym in hardware chip testing,

where it stands for Automatic Test Pattern

Generation [2]. We hope network ATPG will be

equally useful for automated dynamic testing of

production networks.

.REFERENCES

[1] “ATPG code repository,” [Online]. Available:

http://eastzone.github.com/atpg/

[2] “Automatic Test Pattern Generation,” 2013

[Online]. Available:

http://en.wikipedia.org/wiki/Automatic_test_patter

n_generation

[3] P. Barford, N. Duffield, A. Ron, and J.

Sommers, “Network performance anomaly

detection and localization,” in Proc. IEEE

INFOCOM, Apr. , pp. 1377–1385.

[4] “Beacon,” [Online]. Available:

http://www.beaconcontroller.net/

[5] Y. Bejerano and R. Rastogi, “Robust

monitoring of link delays and faults in IP

networks,” IEEE/ACM Trans. Netw., vol. 14, no. 5,

pp. 1092–1103, Oct. 2006.

[6] C. Cadar, D. Dunbar, and D. Engler, “Klee:

Unassisted and automatic generation of high-

coverage tests for complex systems programs,” in

Proc. OSDI, Berkeley, CA, USA, 2008, pp. 209–

224.

IJSER

http://www.ijser.org/
http://eastzone.github.com/atpg/
http://en.wikipedia.org/wiki/Automatic_test_pattern_generation
http://en.wikipedia.org/wiki/Automatic_test_pattern_generation
http://www.beaconcontroller.net/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 532
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

[7] M. Canini,D.Venzano, P. Peresini,D.Kostic,

and J. Rexford, “A NICE way to test OpenFlow

applications,” in Proc. NSDI, 2012, pp. 10–10.

[8] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C.

Diot, “Netdiagnoser: Troubleshooting network

unreachabilities using end-to-end probes and

routing data,” in Proc. ACM CoNEXT, 2007, pp.

18:1–18:12.

[9] N. Duffield, “Network tomography of binary

network performance characteristics,” IEEE Trans.

Inf. Theory, vol. 52, no. 12, pp. 5373–5388, Dec.

2006.

[10] N. Duffield, F. L. Presti, V. Paxson, and D.
Towsley, “Inferring link loss using striped unicast
probes,” in Proc. IEEE INFOCOM, 2001, vol. 2,
pp. 915–923.

 IJSER

http://www.ijser.org/

	4.IMPLEMENTATION
	Java Technology
	The Java Programming Language
	The Java programming language is a high-level language that can be characterized by all of the following buzzwords:

